Asymmetric Transfer Hydrogenations of 2,3-Disubstituted Quinoxalines with Ammonia Borane

Songlei Li,†‡ Wei Meng,†‡ and Haifeng Du*,†‡

†Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
‡University of Chinese Academy of Sciences, Beijing 100049, China

Supporting Information

ABSTRACT: An asymmetric transfer hydrogenation of 2,3-disubstituted quinoxalines using a chiral frustrated Lewis pair of Piers’ borane and (R)-tert-butylsulfinamid as the catalyst with ammonia borane as the hydrogen source has been successfully realized. For 2-alkyl-3-arylquinoxaline substrates, cis-tetrahydroquinoxalines were obtained as the predominant products in high yields with 77–86% ee. In contrast, trans isomers were often furnished as major products for the reactions of 2,3-dialkylquinoxalines with up to >99% ee.

The chemistry of frustrated Lewis pairs (FLPs) has become one of the most important protocols for metal-free hydrogenations, and great progress on the catalyst and substrate diversity has been achieved in the past decade.1,2 Significantly, a big step forward in asymmetric hydrogenation has also been made since Chen and Klankermayer reported the first example in 2008.3,4 Chiral boron Lewis acid components or motifs in FLPs were usually employed for the asymmetric induction, which were synthesized either by the hydroboration of chiral alkenes with Piers’ borane, HB(C6F5)2,5 or by the substitution reaction of (C6F5)3BCl with chiral organometallic reagents.6 Recently, our group brought forth a practical strategy to access chiral boranes via an in situ hydroboration of chiral dienes or diynes.7 Despite these advances, the use of readily available chiral Lewis bases for asymmetric hydrogenation has rarely been reported. In 2011, Stephan and co-workers reported a hydrogenation of imines using the combination of B(C6F5)3 and (S,S)-DIOP to give 25% ee.8 Very recently, our group developed a novel FLP of Piers’ borane (2) and (R)-tert-butylsulfinamid (3), which itself can release proton and hydride to the substrate and can be regenerated with ammonia borane as the hydrogen source (Scheme 1).9,10 The asymmetric transfer hydrogenation of imines 1 was realized to give amine products 4 with up to 95% ee. The easy accessibility of this FLP makes it interesting to further explore its application in the asymmetric transfer hydrogenation of other unsaturated compounds.

Scheme 1. FLP-Catalyzed Transfer Hydrogenation of Imines with Ammonia Borane

Scheme 2. Chiral FLP-Catalyzed Asymmetric Hydrogenation of 2,3-Disubstituted Quinoxalines

Scheme 3. Initial Studies of the Asymmetric Transfer Hydrogenation of 2,3-Disubstituted Quinoxalines

Received: March 28, 2017

DOI: 10.1021/acs.orglett.7b00935
Org. Lett. XXXX, XXX, XXX–XXX
active compounds. In comparison with the well-established methodologies for the reactions of 2-substituted quinoxalines, only very few examples have been reported for the asymmetric hydrogenation of 2,3-disubstituted quinoxalines. In 2011, Fan and co-workers described the first asymmetric hydrogenation of 2,3-dialkylquinoxalines using a chiral ruthenium catalyst to give the desired products with trans selectivity and up to 99% ee. In 2015, our group reported a highly cis-selective and enantioselective hydrogenation of 2-alkyl-3-arylquinoxalines employing a chiral borane catalyst generated by the in situ hydroboration of chiral dienes with Pier's borane (Scheme 2). However, 2,3-diaryl- or dialkylquinoxalines were inert for this catalytic system. Herein we report our efforts on the asymmetric transfer hydrogenation of 2,3-disubstituted quinoxalines with ammonia borane using the combination of HB(C₆F₅)₂ and (R)-tert-butylsulfanamide as a chiral FLP catalyst (Scheme 2).

The tolerable substituents of quinoxalines for the FLP-catalyzed transfer hydrogenation were initially investigated. 2,3-Disubstituted quinoxalines 5a−c were subjected to the asymmetric transfer hydrogenation with ammonia borane (2.0 equiv) at 30 °C in toluene using 10 mol % HB(C₆F₅)₂ (2) and 20 mol % (R)-tert-butylsulfanamide (3). As shown in Scheme 3, the reaction of 2,3-diphenylquinoxaline (5a) was sluggish and give only a small amount of product 6a with cis selectivity. Meanwhile, 2-methyl-3-phenylquinoxaline (5b) proved to be a more reactive substrate, giving the corresponding product 6b in 41% conversion with high cis selectivity and 79% ee. Notably, the trans isomer of 6c was furnished with 97% ee as the major product when 2,3-dimethylquinoxaline (5c) was employed as the substrate. These preliminary results indicate that 2-alkyl-3-aryl- and 2,3-dialkylquinoxalines likely are suitable substrates for the current asymmetric transfer hydrogenation.

The reaction conditions for the asymmetric transfer hydrogenation of 2-methyl-3-phenylquinoxaline (5b) were optimized to further improve the reactivity and enantioselectivity (Table S1 in the Supporting Information). With a catalyst loading of 30 mol % and a mixture of bromobenzene and n-hexane (3/7 v/v) as the solvent, the product 6b was obtained in 88% conversion with 94:6 dr and 82% ee (Table S1, entry 6). Under the optimal reaction conditions, a variety of 2-alkyl-3-arylquinoxalines 5b,d−i were next examined for the asymmetric transfer hydrogenation. As shown in Scheme 4, all of these reactions proceeded smoothly to give the desired products 6b,d−i in 72−95% yield with 94:6−97:3 dr and 77−86% ee.

The asymmetric transfer hydrogenation of 2,3-dimethylquinoxaline (5c) with ammonia borane intrigued us because 5c was inert for the previously reported asymmetric hydrogenation with H₂. After a further optimization (Table S2), it was found that utilizing dichloromethane as the solvent and the combination of HB(C₆F₅)₂ (20 mol %) and (R)-tert-

Table 1. Asymmetric Transfer Hydrogenation of 2,3-Dialkylquinoxalines"a

<table>
<thead>
<tr>
<th>entry</th>
<th>product 6</th>
<th>yield (%)</th>
<th>trans/cis</th>
<th>ee (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6c: R = H</td>
<td>84</td>
<td>72/28</td>
<td>99</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>6i: R = F</td>
<td>72</td>
<td>64/36</td>
<td>98</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>6k: R = Cl</td>
<td>86</td>
<td>56/44</td>
<td>&gt;99</td>
<td>rac</td>
</tr>
<tr>
<td>4</td>
<td>6l: R = Br</td>
<td>81</td>
<td>58/42</td>
<td>99</td>
<td>rac</td>
</tr>
<tr>
<td>5</td>
<td>6m: R = Me</td>
<td>84</td>
<td>75/25</td>
<td>99</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>6n: R = OMe</td>
<td>58</td>
<td>69/31</td>
<td>99</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>6o: R = Cl</td>
<td>78</td>
<td>55/45</td>
<td>99</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>6p: R = Me</td>
<td>85</td>
<td>72/28</td>
<td>99</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>6q: R = Et</td>
<td>75</td>
<td>60/40</td>
<td>98</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>6r: R = Pr</td>
<td>72</td>
<td>58/42</td>
<td>98</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>6s: R = Pr</td>
<td>63</td>
<td>53/47</td>
<td>93</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>6t: R = Bu</td>
<td>85</td>
<td>60/40</td>
<td>98</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>6u: R = c-hexyl</td>
<td>67</td>
<td>50/50</td>
<td>89</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>6v: R = benzyl</td>
<td>76</td>
<td>65/35</td>
<td>97</td>
<td>35</td>
</tr>
<tr>
<td>15</td>
<td>6w</td>
<td>72</td>
<td>50/50</td>
<td>99</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>6x</td>
<td>78</td>
<td>28/72</td>
<td>93</td>
<td>--</td>
</tr>
<tr>
<td>17</td>
<td>6y</td>
<td>78</td>
<td>29/71</td>
<td>99</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>6z</td>
<td>93</td>
<td>59/41</td>
<td>&gt;99</td>
<td>--</td>
</tr>
</tbody>
</table>

a All of the reactions were carried out with quinoxaline (0.30 mmol), 2 (0.06 mmol), 3 (0.09 mmol), and ammonia borane (0.60 mmol) in CH₂Cl₂ (3.0 mL) at 30 °C. Isolated yields. b Determined by 1H NMR analysis of the crude material. c Determined by chiral HPLC. d The reaction was run on a 1.0 mmol scale.
butylsulfinamide (30 mol %) as the catalyst can afford tetrahydroquinoxaline 6c in 84% conversion with 72:28 dr and 99% ee (Table S2, entry 6). Under the same reaction conditions, a variety of 2,3-dialkylquinolines 5c,j−w were subjected to the asymmetric transfer hydrogenation, which furnished the desired products 6c,j−w in 58−86% yield with 50:50−75:25 dr and 89−99% ee for the trans isomers (Table 1, entries 2−15). Unfortunately, the ee for the cis isomers were much lower (Table 1, entries 2−14). Because of the ring strain, the transfer hydrogenation of quinoxalines 5x and 5y gave meso isomers as major products (Table 1, entries 16 and 17). Interestingly, high ee's can be still obtained for the trans isomers. When quinoxaline 6z bearing a larger ring was used, tetrahydroquinoxaline 6z in favor of the trans isomer was obtained in 93% yield with >99% ee (Table 1, entry 18).

In summary, a metal-free asymmetric transfer hydrogenation of 2,3-disubstituted quinolines with ammonia borane as the hydrogen source using a chiral frustrated Lewis pair of HB(C6F5)2 and (R)-tert-butyllsulfinamide as the catalyst has been successfully achieved. High cis selectivities and 77−86% ee's were obtained for the reactions of 2-alkyl-3-arylquinoxaline derivatives. The desired products were obtained in 49−93% yield with 28:72−14:86 dr (trans/cis) and 89−99% ee. Further efforts on searching for novel chiral FLPs and exploring their applications in asymmetric hydrogenation and transfer hydrogenation are underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b00935.

Procedure for the asymmetric transfer hydrogenation, characterization of products, and data for the determination of enantiomeric excesses along with the NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*haifengdu@iucas.ac.cn

ORCID

Wei Meng: 0000-0002-1555-3738
Haifeng Du: 0000-0003-0122-3735

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for the financial support from the National Natural Science Foundation of China (21572231, 21502199, and 21521002).

REFERENCES


DOI: 10.1021/acs.orglett.7b00935
Org. Lett. XXXX, XXX, XXX−XXX