Asymmetric Transfer Hydrogenation of 3-Nitroquinolines: Facile Access to Cyclic Nitro Compounds with Two Contiguous Stereocenters

Xian-Feng Cai,[a, b] Mu-Wang Chen,[a] Zhi-Shi Ye,[a] Ran-Ning Guo,[a, b] Lei Shi,[a] Yan-Qin Li,[b] and Yong-Gui Zhou*[a]

Enantiopure nitro compounds are versatile building blocks in organic synthesis because they can be easily transformed into a vast array of important chiral compounds, such as amine, aldehydes, acids or denitrated compounds.[1]

To date, many elegant catalytic methods have been developed for the synthesis of enantiopure nitro compounds, such as enantioselective conjugate additions to nitroalkenes,[2] asymmetric Henry reaction,[3] and asymmetric reduction of prochiral unsaturated nitro compounds.[4] In view of the ready availability and easy preparation of the aromatic nitro compounds, the asymmetric reduction of such compounds would provide efficient and straightforward access to the corresponding chiral cyclic saturated and partially saturated nitro compounds. However, because of their resonance stability and special electron-withdrawing and coordination properties, there is little information available in literature about the asymmetric reduction of aromatic nitro compounds, despite the fact that catalytic asymmetric hydrogenation of heteroarenes/arenes has been well documented.[5–7]

Given the significance of the intriguing chiral cyclic nitro compounds, the development of asymmetric reduction of aromatic nitro compounds is challenging but highly desirable. Herein, we report an efficient asymmetric transfer hydrogenation of aromatic nitro compounds, 3-nitroquinolines, with excellent enantio- and diastereoselectivities, and both enantiocontrol and diastereoselectivity are high. The original experiment was conducted on the hydrogenation of 1a by employing \([\text{Ir}(\text{cod})\text{Cl}]_2/\text{(S)-MeO-Biphep}/\text{I}_2\) [\((\text{S})\)-MeO-Biphep = (S)-(2,2′-dimethoxybiphenyl-6,6′-diyl)bis(diphenylphosphine)].[8] Unfortunately, the desired product 2-phenyl-3-nitro-1,2,3,4-tetrahydroquinoline (4a) was obtained in poor yield and with poor enantioselectivity (16% yield and 19% ee), the main reasons for which may be the strong aromaticity of aromatic nitro compounds and the interaction of the nitro group with the iridium catalyst. Chiral organocatalysts with high functional-group tolerance have been successfully employed in asymmetric transfer hydrogenation of C=O, C=N, and C=C bonds and heteroaromatic compounds using Hantzsch ester as the hydrogen source.[9] So, our further studies changed to explore organocatalyzed asymmetric transfer hydrogenation. Chiral phosphoric acid (CPA)[10] 3a was employed as the catalyst with Hantzsch ester 2a as the hydrogen source. When the reaction was carried out in toluene at room temperature, 4a was obtained with 97% yield and 28% ee (Table 1, entry 1). Next, the effect of the reaction medium was tested (Table 1, entries 2–5). A dramatic influence was observed, and benzene was found to be the best choice with regard to both yield and enantioselectivity (97% yield, 35% ee; Table 1, entry 5). Then, various commercially available chiral H$_2$-BINOL-derived phosphoric acids (S)-3 were tested (Table 1, entries 6–12). From this survey the more sterically congested catalysts, such as 3b and 3c, were less reactive (Table 1, entries 6 and 7), but the best result (99% yield, 85% ee; Table 1, entry 11) was obtained when 3g bearing the 2-methoxyphenyl substituent was employed.

Once the best organocatalyst 3g was confirmed, we conducted further investigation of the effect of several common Hantzsch esters (2a, 2b, and 2c). There appears to be a trend toward declined enantiocontrol as the relative size of the ester moieties at the 3,5-diarylpyridine site increases. R = OMe, 86% ee; R = OEt, 85% ee; R = O-Bu, 74% ee; R = CH$_2$CHOH, 72% ee; R = CH$_2$CO$_2$H, 71% ee; R = Ph, 62% ee; R = HOCH$_2$CO$_2$H, 56% ee; R = (2-methoxyphenyl)$_2$, 55% ee; R = (2-methoxyphenyl)$_3$, 53% ee.

[a] X.-F. Cai, M.-W. Chen, Z.-S. Ye, R.-N. Guo, Dr. L. Shi, Prof. Y.-G. Zhou
State Key Laboratory of Catalysis
Dalian Institute of Chemical Physics
Chinese Academy of Sciences
Dalian 116023 (P. R. China)
E-mail: yyzhou@dicp.ac.cn
[b] X.-F. Cai, R.-N. Guo, Prof. Y.-Q. Li
Department of Chemistry
Dalian University of Technology
Dalian 116612 (P. R. China)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.201300380.
Table 1. Evaluation of reaction parameters

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>(S)-3</th>
<th>Yield [%][b]</th>
<th>ee [%][c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>2a</td>
<td>3a</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>THF</td>
<td>2a</td>
<td>3a</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>1,4-dioxane</td>
<td>2a</td>
<td>3a</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>CHCl3</td>
<td>2a</td>
<td>3a</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>benzene</td>
<td>2a</td>
<td>3a</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>benzene</td>
<td>2b</td>
<td>3b</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>benzene</td>
<td>2c</td>
<td>3c</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>benzene</td>
<td>2d</td>
<td>3d</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>benzene</td>
<td>2e</td>
<td>3e</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>benzene</td>
<td>2f</td>
<td>3f</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>benzene</td>
<td>2g</td>
<td>3g</td>
<td>99</td>
</tr>
<tr>
<td>12</td>
<td>benzene</td>
<td>2h</td>
<td>3h</td>
<td>97</td>
</tr>
<tr>
<td>13</td>
<td>benzene</td>
<td>2i</td>
<td>3i</td>
<td>99</td>
</tr>
<tr>
<td>14</td>
<td>benzene</td>
<td>2j</td>
<td>3j</td>
<td>47</td>
</tr>
<tr>
<td>15</td>
<td>benzene</td>
<td>2k</td>
<td>3k</td>
<td>97</td>
</tr>
</tbody>
</table>

[a] Reactions were performed with 1a (0.125 mmol) and 2d (2.4 equiv) in solvent (5.0 mL) at 25°C with catalyst (5 mol %). The d.r. values of products were determined by H NMR spectroscopy. In all cases, d.r. > 20:1. [b] Yield of isolated product. [c] Determined by HPLC analysis.

ee: Table 1, entries 11, 13–14). So, a smaller-sized dihydro- pyridine 2d bearing acetyl groups was synthesized and tested. As expected, a much better enantioselectivity was obtained (94% ee; Table 1, entry 15). Thus, the optimized conditions were established as: chiral phosphoric acid 3g (5 mol %), dihydropyridine 2d (2.4 equiv), benzene, 25°C.

In order to probe the generality of the catalytic system, a series of 3-nitroquinolines were subjected to transfer hydrogenation under the optimized conditions, and the results were summarized in Table 2. All the 2-aryl substituted substrates were smoothly converted to the corresponding products in high yields. Notably, the electronic property of the phenyl group on C2-position had a great influence on the enantioselectivity (Table 2, entries 1–8 and 10). Substrates bearing electron-withdrawing groups gave much higher ee values than those with electron-donating groups. Especially, substrate 1h with a 4-CF3 group on the phenyl ring gave the best enantioselectivity (99% ee; Table 2, entry 8), although it required a much longer reaction time. This method was also successfully applied to the 2-(furan-2-yl) substituted substrate 3i with 80% ee (Table 2, entry 9), which might be a consequence of its electron-rich nature. High enantioselectivities were also observed in the hydrogenation of 2,6-disubstituted substrates 1k and 11 (92% ee and 92% ee; Table 2, entries 11 and 12). Using this catalyst system, the interesting 2-styryl derivatives could also be reduced with moderate yields and excellent enantioselectivities while the conjugated C=C double bond was preserved (Table 2, entries 13–15). Unfortunately, although the 2-alkyl substituted substrate 2-butyl-3-nitro-1,2-dihydroquinoline could be completely transformed, the partially hydrogenated product 2-butyl-3-nitro-1,4-dihydro-quinoline was obtained in 97% yield.

The absolute configuration of hydrogenation product 4a was determined to be cis-(S,S) based on single-crystal X-ray diffraction analysis of its N-tosyl derivative 5 by a simple two-step transformation of reduction and protection with p-toluenesulfonyl chloride (Scheme 1).

Scheme 1. Determination of the absolute configuration of 4a.

To explore the mechanism, a series of control experiments were conducted (Scheme 2). The transfer hydrogenation of 3-nitro-2-phenyl-1,2-dihydroquinoline (6), which was considered as the probable intermediate in case of initial 1,2-H addition, failed to proceed (Eq. [1]). This finding suggested that the reaction might be initiated by 1,4-H addition. Fortunately, when the amount of 2a was decreased to 1.1 equiv, the 1,4-H addition intermediate 2-phenyl-3-nitro-1,4-dihydroquinoline (7a) was obtained as main product with 87% yield (Eq. [2]). To confirm the former hypothesis, 7a was...
subjected to the transfer hydrogenation under the optimized reaction conditions [Eq. (3)]. As expected, 4a was afforded with 97% yield and 94% ee, which was consistent with the result of the direct transformation of 1a (Table 2, entry 1).

On the basis of the above experimental results, and in consideration of the recent report that the transfer hydrogenation of \(\beta \)-amino nitroolefin was conducted via its imine intermediate,[4k] a stepwise transfer hydrogenation was proposed (Scheme 3). The reaction is initiated by 1,4-H addition to provide the partial reductive intermediate 7, followed by a rapid acid-catalyzed enamine/imine isomerization between 7 and 8. Then a diastereoselective 1,2-hydrogenation occurs to deliver the desired \(\text{cis} \) product 4. It is noteworthy that the enantioselectivity is controlled by the isomerization of enamine 7 to imine 8 and the hydrogenation of the C=N bond, which is in fact a dynamic kinetic resolution process.[14] The excellent diastereo- and enantioselectivity achieved in this transfer hydrogenation is attributed to the fact that the rate of the tautomerization is faster than that of the diastereoselective hydrogenation of 8, and reduction rate of \((S)\)-8 is quicker than that of \((R)\)-8, that is, \(k_1 \gg k_2 \gg k_3\). Notably, similar mechanism have been proposed before by Rueping et al., us, and others in the hydrogenation of quinoline derivatives.[6c,e,11a,c,f,j] However, it is the first time that the key 1,4-H addition intermediate was isolated and used to elucidate the mechanism. In addition, an alternative mechanism that involves the direct reduction of enamine 7 cannot currently be ruled out.

With the chiral \(\text{cis} \) products in hand, we conducted further investigation of their epimerization into the corresponding \(\text{trans} \) products. To our delight, when 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) was employed, chiral \(\text{trans} \)-4a with identical optical purity could be obtained smoothly from \(\text{cis} \)-4a in 74% yield (Scheme 4), which is generally difficult to prepare through the direct asymmetric hydrogenation.

To demonstrate the further utility of the chiral 2-styryl products, as illustrated in Scheme 5, the derivatization of 4m was conducted. Using Pd/C as catalyst, hydrogenated product (2S,3S)-2-phenethyl-3-nitro-1,2,3,4-tetrahydroquinoline (9) was delivered selectively in 94% yield without loss of optical purity [Eq. (4)]. Furthermore, the product with a reduced nitro group, (2S,3S)-2-styryl-1,2,3,4-tetrahydroquinolin-3-amine (10), was obtained in 83% yield in the presence of Zn and HCl [Eq. (5)].

Finally, we applied this attractive protocol to the synthesis of substance P antagonist 12[15] (Scheme 6). The synthetic route began with the reduction of \(\text{cis} \)-4a with Pd/C under \(\text{H}_2 \).
Typical Procedure for Asymmetric Transfer Hydrogenation of 3-Nitroquinolines

A mixture of 3-nitroquinoline 1 (0.125 mmol), dihydropyridine 2d (58 mg, 0.30 mmol, 2.4 equiv), and chiral phosphoric acid 3g (47 mg, 0.30 mmol, 2.4 equiv), and NaBH(OAc)₃ (0.125 mmol) in dry benzene (5.0 mL) was stirred at 25 or 45 °C under nitrogen for 12–48 h. After the reaction was complete (determined by TLC), the crude product was purified directly by silica gel column chromatography (petroleum ether/CH₂Cl₂ 1:1) to give the pure product 4. The enantiomeric excesses were determined by chiral HPLC.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21125208 & 21032003) and the National Basic Research Program of China (2010CB833500).

[13] CCDC 915386 contains the supplementary crystallographic data for this paper. These can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Received: March 21, 2013
Published online: May 17, 2013